当前位置: > Bezier曲线定义与性质,分别给出算法简述....
题目
Bezier曲线定义与性质,分别给出算法简述.
现在就要用,哪位大虾帮下忙,

提问时间:2020-10-26

答案
一、Bezier曲线定义:
给定n+1个控制顶点Pi(i=0~n) ,则Bezier曲线定义为:
P(t)=∑Bi,n(t)Pi u∈[0,1]
其中:Bi,n(t)称为基函数.
Bi,n(t)=Ci nti (1-t)n-i
Ci n=n!/(i!*(n-i)!)

二、Bezier曲线性质
1、端点性质:
a)P(0)=P0, P(1)=Pn, 即:曲线过二端点.
b)P’(0)=n(P1-P0), P’(1)=n(Pn-Pn-1)
即:在二端点与控制多边形相切.
2、凸包性:Bezier曲线完成落在控制多边形的凸包内.
3、对称性:由Pi与Pn-i组成的曲线,位置一致,方向相反.
4、包络性:Pn (t)=(1-t)Pn-1 (t)+tPn-1 (t)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.