当前位置: > 已知抛物线x2=4y.过抛物线焦点F,作直线交抛物线于M,N两点...
题目
已知抛物线x2=4y.过抛物线焦点F,作直线交抛物线于M,N两点
已知抛物线x2=4y.
过抛物线焦点F,作直线交抛物线于M,N两点,求|MN|最小值

提问时间:2020-10-25

答案
因M,N两点均在抛物线x²=4y上,
∴可设:M(2m,m²),N(2n,n²)
又三点M,F(0,1),N共线.
∴由三点共线条件可得:mn=-1.
由抛物线定义,可得:
|MF|=m²+1,
|NF|=n²+1.
又|MN|=|MF|+|NF|=2+m²+n²≥2+2|mn|=4.
∴|MN|min=4,
此时,M(-2,1),N(2,1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.