题目
设f(x)是定义在正实数集上的函数,并且对任意的正实数xy,恒有f(xy)=f(x)+f(y)成立
求证
(1) f(1/x)=-f(x)
(2) 若n属于正实数集,则f(x/n)=f(x)-f(n)
求证
(1) f(1/x)=-f(x)
(2) 若n属于正实数集,则f(x/n)=f(x)-f(n)
提问时间:2020-10-25
答案
证明:
(1)
由于:f(xy)=f(x)+f(y)
则:令x=y=1
则有:
f(1*1)=f(1)+f(1)
f(1)=2f(1)
则:f(1)=0
再令:y=1/x
则有:
f[x*(1/x)]=f(x)+f(1/x)
f(1)=f(x)+f(1/x)
又:f(1)=0
则:
0=f(x)+f(1/x)
f(1/x)=-f(x)
(2)由于:
n属于正实数集
则:(1/n)属于正实数集
则有:
f[x/n]+f(n)=f[(x/n)*n]
即:
f(x/n)=f(x)-f(n)
(1)
由于:f(xy)=f(x)+f(y)
则:令x=y=1
则有:
f(1*1)=f(1)+f(1)
f(1)=2f(1)
则:f(1)=0
再令:y=1/x
则有:
f[x*(1/x)]=f(x)+f(1/x)
f(1)=f(x)+f(1/x)
又:f(1)=0
则:
0=f(x)+f(1/x)
f(1/x)=-f(x)
(2)由于:
n属于正实数集
则:(1/n)属于正实数集
则有:
f[x/n]+f(n)=f[(x/n)*n]
即:
f(x/n)=f(x)-f(n)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1千米、公里、英里之间是怎样换算的?
- 2一平底玻璃杯放在水平桌面上,内装0.15kg水,杯子与桌面的接触面积是10^-3m^2,桌面所受玻璃杯的压强是2.7*
- 3人生的意义就在于等死的过程
- 4古代诗词中与船有关的句子
- 5甲、乙、丙三人中,甲比乙大6岁;丙的年龄是甲的2倍,比乙大22岁. 你能算出他们三人年龄的总和吗?
- 6I want to know 句型
- 7博士帽是用黑色卡纸做成的,上面是边长为30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱
- 8Who is the girl ___ Mr.Smith and Mrs.Smith .
- 9函数f(x)=2x2-3|x|的单调减区间是_.
- 10下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数. 根据题意可画出图∵∠AOC=∠BOA-∠BOC=70°-15°=55°∴∠AOC=55°若你是老师,
热门考点