当前位置: > 函数f(x)=ln1/x-ax*x+x(a>0),若f(x)有两个极值点X1,X2,证明f(X1)+f(x2)>3-2ln2...
题目
函数f(x)=ln1/x-ax*x+x(a>0),若f(x)有两个极值点X1,X2,证明f(X1)+f(x2)>3-2ln2

提问时间:2020-10-23

答案
由题可知f'(x)=-1/x-2ax+1=-(2ax^2-x+1)/x,f(x)有两个极值点X1,X2,那么f'(x)=0有两个解,即2ax^2-x+1=0有两个解,根据伟达定理可知,X1+X2=1/2a,X1*X2=1/2a,1-8a>0,a<1/8,又f(X1)+f(x2)=-ln(X1*X2)-a(X1^2+X2^2)+(X1+X2)>-ln(1/2a)-1+1/2a,结合a<1/8,即可得f(X1)+f(x2)>3-2ln2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.