当前位置: > 函数f(x)=cx/2x+3,(x不等于-3/2)满足f[f(x)]=x,则常数c等于几?为什么?...
题目
函数f(x)=cx/2x+3,(x不等于-3/2)满足f[f(x)]=x,则常数c等于几?为什么?

提问时间:2020-10-20

答案
设y=f(x)
则y=f(x)=cx/(2x+3)
y=cx/(2x+3)
x=f[f(x)]=f(y)=cy/(2y+3)
所以
cx=2xy+3y
cy=2xy+3x
两式相减得:
c(x-y)=3(y-x)
所以c=-3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.