当前位置: > 有关函数零点的判定的问题...
题目
有关函数零点的判定的问题
高中数学必修1中有这样一段话:若果函数Y=F(X)在区间【a,b]上的图像是连续不断的一条曲线,并且有F(a)*F(b)<0,那么,函数y=F(x)在区间(a,b)内有零点,即存在c∈(a,b),使得F(c)=0.
为什么描述曲线时是用闭区间,而刻画零点是用开区间?
这个判定的逆命题成不成立?我觉得是不成立的.

提问时间:2020-10-19

答案
为什么描述曲线时是用闭区间,而刻画零点是用开区间?
答:保证f(a),f(b)有意义,所以闭;因为条件中要求F(a)*F(b)<0,所以结论才是开区间,即端点a,b不能是零点,避免出现其它歧义情况.
逆命题不成立,如y=x^2,x∈(-1,1)有一零点,却保证不了F(a)*F(b)<0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.