题目
1.已知:抛物线y=ax平方+bx+c(a0.以下结论:(1)a+b>0(2)a+c>0 (3)-a+b+c>0(4)b平方—2ac>5a平方.其中正确的个数有( )
A.一个 B.2个 C.3个 D.4个
2.一次函数y=-2x+1的图像经过抛物线y=x平方+mx+1(m不等于0)的顶点,则m=( )
3.有一个两次函数的图像,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4
乙:与x轴两个交点的横坐标都是整数
丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3.
请写出满足上述全部特点的一个两次函数
备注:请说明理由
A.一个 B.2个 C.3个 D.4个
2.一次函数y=-2x+1的图像经过抛物线y=x平方+mx+1(m不等于0)的顶点,则m=( )
3.有一个两次函数的图像,三位学生分别说出了它的一些特点:
甲:对称轴是直线x=4
乙:与x轴两个交点的横坐标都是整数
丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3.
请写出满足上述全部特点的一个两次函数
备注:请说明理由
提问时间:2020-10-18
答案
正确的个数有4个
理由:y=ax^2+bx+c(a0,
0=a-b+c=0,b=a+c,有4A+2(a+c)+c>0,
即2a+c>0,(∵a0,)
∵2a+c>0,∴a+c>0成立.
∵2a+c>0,c>-2a,
4a+2b+c>0,有4a+2b-2a>0成立,
即a+b>0成立.
∵b=a+c,
-a+b+c=-a+a+c+c=2c>0成立.
∵b=a+c,
b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2,
又∵c>-2a>0,两边平方得,
c^2>4a^,
c^2-4a>0成立,即b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2>0成立.
理由:y=ax^2+bx+c(a0,
0=a-b+c=0,b=a+c,有4A+2(a+c)+c>0,
即2a+c>0,(∵a0,)
∵2a+c>0,∴a+c>0成立.
∵2a+c>0,c>-2a,
4a+2b+c>0,有4a+2b-2a>0成立,
即a+b>0成立.
∵b=a+c,
-a+b+c=-a+a+c+c=2c>0成立.
∵b=a+c,
b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2,
又∵c>-2a>0,两边平方得,
c^2>4a^,
c^2-4a>0成立,即b^2-2ac-5a^2=(a+c)^2-2ac-5a^2=c^2-4a^2>0成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1ATP如何水解生成AMP?需要几个ATP?消耗几个高能磷酸键?
- 2把下面所给的单词组成句子.
- 3翻译成英语:我们应该积极响应国家的号召,从我做起,从小事做起.
- 4当我们停止敲钟时,声音却没有停止,为什么会“余音未绝”正确的是:
- 5趣味数学题带答案
- 6某汽车公司所营运的公路AD段共有4个车站,依次为ABCD,且BC=2km,AD=5km
- 7甲乙两人分别从ab两地同时出发,相向而行,甲行到AB的中点时,乙离中点还有0.18千米.按这样的速度,甲到B地时
- 8夏天有哪些动物在活动
- 9用"节日的大街真热闹"为总起句写一段话
- 10小李在解方程5a-x=13时(x为未知数),误将-x看成了+x,得到x=-2,则原方程的解是()