当前位置: > 定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1...
题目
定义在正实数上的函数f(x),对于任意的m,n都属于正实数,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)1

提问时间:2020-10-18

答案
f(4)=-1
f(8)=-2
因为f(4)=f(8*1/2)=f(8)+f(1/2)
-1=-2+f(1/2)
f(1/2)=1
所以f(x^2-3x)>1即
f(x^2-3x)>f(1/2)
可以证明f(x)是减函数(用定义)
0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.