当前位置: > 求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积...
题目
求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积

提问时间:2020-10-17

答案
y=x^2和x=1相交于(1,1)点,
绕X轴旋转所成体积V1=π∫(0→1)y^2dx
=π∫(0→1)x^4dx
=πx^5/5(0→1)
=π/5.
绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)(√y)^2dy
=π-πy^2/2(0→1)
=π/2.
其中π*1^2*1是圆柱的体积,而π∫(0→1)(√y)^2dy是抛物线y=x^2、y=1、x=0围成的图形绕Y轴旋转的体积.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.