当前位置: > 在三角形ABC中,设内角A.B.C的对边分别为a.b.c,向量m=(cosA,sinA),向量n=(√2-sinA,cosA),若|向量m+向量n|=...
题目
在三角形ABC中,设内角A.B.C的对边分别为a.b.c,向量m=(cosA,sinA),向量n=(√2-sinA,cosA),若|向量m+向量n|=
b=4√2,且c=2√a,求三角形ABC的面积
向量m+向量n|=2
(t-2)[(t+2)t^2+16]=0 怎么来的?

提问时间:2020-10-17

答案
m+n:(cosA+√2-sinA,sinA+cosA)|m+n|=√(x^2+y^2)=√[4+4√2(cosA-sinA)]=2得cosA=sinA,所以A=π/4由余弦定理a^2=b^2+c^2-2bcCosA可得一个关于a的方程a^2-4a+16√a-32=0设√a=t(t>0)(t-2)[(t+2)t^2+16]=0因为t>0...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.