当前位置: > 设实对称矩阵A的特征值全大于a,实对称矩阵B的特征值全大于b,证明A+B的特征值全大于a+b....
题目
设实对称矩阵A的特征值全大于a,实对称矩阵B的特征值全大于b,证明A+B的特征值全大于a+b.

提问时间:2020-10-17

答案
解.因为:实对称矩阵A的特征值全大于a,所以:A-aE为正定阵;同理:A-bE为正定阵.从而:(A-aE)+(A-bE)为正定阵.假设λ为A+B的任一特征值,相应的特征向量为x,即 (A+B)x=λx,于是:[(A-aE)+(B-bE...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.