当前位置: > 设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0....
题目
设函数f〔x〕对任意x,y属于R,都有f〔x+y〕=f〔x〕+f〔y〕,且x>0时,f〔x〕<0.
⑴证明f〔x〕为奇函数,⑵证明f〔x〕在R上为减函数

提问时间:2020-10-17

答案
(1) 【证明f〔x〕为奇函数,即证明 f(-x)=-f(x)】f〔x+y〕=f〔x〕+f〔y〕,将 x=0 ,y=0 代入 ,可得:f(0)=f(0)+f(0),那么 f(0)=0将 y=-x 代入 f(0)=f(x)+f(-x) =0 那么:f(-x)=-f(x) 因此 f〔x〕为奇函数 (2) 【证...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.