题目
已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+)
已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+),数列{an}{bn}的前n项和分别为Sn和Tn,如果Tn>kSn对一切正整数n都成立,求实数k的取值范围.
a[n+1]-ka[n+2]中[n+1]、[n+2]都是下脚标
题中说了q>-1!
已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+),数列{an}{bn}的前n项和分别为Sn和Tn,如果Tn>kSn对一切正整数n都成立,求实数k的取值范围.
a[n+1]-ka[n+2]中[n+1]、[n+2]都是下脚标
题中说了q>-1!
提问时间:2020-10-15
答案
楼上几位的分类不完整额.
an=a1q^(n-1)
则Sn=a1(1-q^n)/(1-q),由于q>-1且q≠0可知Sn>0
bn=a[n+1]-ka[n+2]=a1q^n(1-kq)则{bn}也是等比数列,公比为q
且b1=a2-ka3=a1q(1-kq)
则Tn=a1q(1-kq)(1-q^n)/(1-q)
又Tn>kSn对于一切n∈N及满足条件的所有q都成立,
即a1q(1-kq)(1-q^n)/(1-q)>ka1(1-q^n)/(1-q),
得k
an=a1q^(n-1)
则Sn=a1(1-q^n)/(1-q),由于q>-1且q≠0可知Sn>0
bn=a[n+1]-ka[n+2]=a1q^n(1-kq)则{bn}也是等比数列,公比为q
且b1=a2-ka3=a1q(1-kq)
则Tn=a1q(1-kq)(1-q^n)/(1-q)
又Tn>kSn对于一切n∈N及满足条件的所有q都成立,
即a1q(1-kq)(1-q^n)/(1-q)>ka1(1-q^n)/(1-q),
得k
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1由数字1、2、3、4、5可以组成多少个没有重复数字且比40000小的五位数( ) A.96 B.144 C.72 D.80
- 2下列说法正确的是A冰吸收了热量不一定融化.B汽化只能在一定温度下进行.C温度达到熔点是晶体一定熔化.
- 3—5又37/17—【(—9.5)+4又74/3】+7.5=
- 4与朱元思书 是一片无头无尾的文章,补写首尾形成一封结构完整的书信
- 5Hei honey,miss u at every beat of my heart
- 6为什么函数sin(ax+b)和cos(cx+d)的图象如果对称轴完全相同,那
- 7小实验:拾豆子
- 8某一精密零件长2毫米,画在图纸上是12厘米,这张图纸的比例尺是多少
- 9鸟为什么要住树上面呢,为什么要住巢里呢?
- 10解比例:(1-1/3)X-8:(1-40%)X+8=14:13
热门考点