当前位置: > 过抛物线y=ax^2(a>0)的焦点F作一直线抛物线于P.Q两点,若线段PF与FQ的长分别为p,q,则(1/p)+(1/q)= 4a...
题目
过抛物线y=ax^2(a>0)的焦点F作一直线抛物线于P.Q两点,若线段PF与FQ的长分别为p,q,则(1/p)+(1/q)= 4a

提问时间:2020-10-15

答案
x^2=1/a*y 焦点F(0,1/4a) 准线y=-1/4a
作一直线y=kx+1/4a
于P(x1,y1).Q(x2,y2)两点,
线段PF与FQ的长=到准线的距离
p=y1+1/4a q=y2+1/4a
1/p+1/q=(y1+y2+1/2a)/(y1y2+1/4a(y1+y2)+1/16a^2)
[(y-1/4a)/k]^2=1/a*y整理得
y^2-(1/2a+1/k^2a)y+1/16a^2=0
y1+y2=1/2a+1/k^2a
y1y2=1/16a^2 代入
1/p+1/q=(y1+y2+1/2a)/(y1y2+1/4a(y1+y2)+1/16a^2)
=(1/a+1/k^2a)/(1/8a^2+1/8a^2+1/4k^2a^2)
=(1/a+1/k^2a)/(1/4a^2+1/4k^2a^2)
=(1/a+1/k^2a)/[(1/a+1/k^2a)*1/4a]
=4a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.