当前位置: > 设数列{an}的前n项和为sn,证明:{an}为等差数列的充要条件是对任意的n∈N﹢,Sn=[n(a₁+an)]/2...
题目
设数列{an}的前n项和为sn,证明:{an}为等差数列的充要条件是对任意的n∈N﹢,Sn=[n(a₁+an)]/2

提问时间:2020-10-15

答案
先证充分:设公差为d,s(n+1)={(n+1)[a1+a(n+1)]}/2为一式,sn=[n(a1+an)]/2为二式,两式相减 推出 a(n+1)-a1=n[a(n+1)-an]即nd=nd 证必要:an=a1+(n-1)d①sn=ai+a2+a3+.an=a1+a1+d+a1+2d+.a1+(n-1)d=na1+{1+2+3+4+....
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.