当前位置: > 定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,...
题目
定义在R上的函数f(x),任意x,y∈R都有f(x+y)+f(x-y)=2f(x)f(y),f(0)≠0,f(x)为偶函数,存在常数c使f(c/2)=0,
证明任意x∈R,f(x+c)=-f(x)成立

提问时间:2020-10-13

答案
这类题是函数方程的简单类型,用赋值法.
f(x+c)+f(x)=f((2x+c)/2+c/2)+f((2x+c)/2-c/2)=2f((2x+c)/2)f(c/2)=0
(解方程组 a+b=x+c
a-b=x)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.