当前位置: > 设函数f(x)=ax^3+3x+1(x属于R),若对于任意x属于[-1,1],都有f(x)大于等于0成立,则实数a=?...
题目
设函数f(x)=ax^3+3x+1(x属于R),若对于任意x属于[-1,1],都有f(x)大于等于0成立,则实数a=?

提问时间:2020-10-13

答案
f'(x)=3ax+3,当a≥0时f'(x)>0,f(x)单调递增,因此只需f(-1)≥0即可,解得a≤-2,不合题意.当a<0时,令f'(x)=0得x=±√(-1/a),当a≤-1时,f(x)在x=-√(1/a)处取得极小值,此时只需f(-√(-1/a))≥0,f(1)≥0同时成立即可,得-4≤a≤-4,所以a=-4,符合题意.当-1<a<0时,f(x)在[-1,1]上递增,故只需f(-1)≥0即可,得a≤-2,不合题意.综上所述,a=-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.