当前位置: > 若直角三角形的两条直角边为ab,斜边为c,斜边上的高位h,则有...
题目
若直角三角形的两条直角边为ab,斜边为c,斜边上的高位h,则有
A ab=h^2
B a^2+b^2=2h^2
C a^2分之1+b^2分之1=h^2分之1
D a分之1+b分之1=h分之1
Why 为什么

提问时间:2020-11-24

答案
Q125756514,
若直角三角形的两条直角边为ab,斜边为c,斜边上的高位h
根据三角形面积相等,则有:a×b÷2=c×h÷2,即ab=ch
根据勾股定理,则有a^2+b^2=c^2
下面是过程:
1/a^2+1/b^2
=(a^2+b^2)/(a^2×b^2) 因为a^2+b^2=c^2,所以
=c^2/(a^2×b^2)
=c^2/(ab)^2 因为ab=ch,所以
=c^2/(ch)^2
=c^2/(c^2×h^2) 分子分母同时约去c^2
=1/h^2
即:1/a^2+1/b^2=1/h^2 ,所以选C.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.