当前位置: > n是自然数,N=[n+1,n+2,.3n]是n+1,n+2,.3n的最小公倍数,如果N可以表示成,N=2^10*奇数,求n的值...
题目
n是自然数,N=[n+1,n+2,.3n]是n+1,n+2,.3n的最小公倍数,如果N可以表示成,N=2^10*奇数,求n的值

提问时间:2020-10-13

答案
我觉得这个题目有问题,满足条件的n值有很多,而且表示其分布非常麻烦
是否是求n的最小值?
由于所有正整数都能表示成(2^m×奇数)的形式,其中m是非负整数
于是依题意,n+1,n+2,…3n这2n个数中,至少有一项含有因数2^10,而且没有一项含有因数2^11
因此,只要满足n+1≤2^10≤3n
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.