当前位置: > 一个等差数列共有2n+1项,若所有奇数项的和为450,所有偶数项的和为420,则该数列的项数是多少?...
题目
一个等差数列共有2n+1项,若所有奇数项的和为450,所有偶数项的和为420,则该数列的项数是多少?
快没用,关键是好.

提问时间:2020-10-12

答案
设等差数列各项为a1、a2、…a2n、a(2n+1).其中奇数项共有n+1个,偶数项共有n项.
因为等差数列的奇数项或偶数项构成的数列也是等差数列
所以:
奇数项的和:a1+a3+…+a(2n-1)+a(2n+1)=[a1+a(2n+1)]/2*(n+1)=450
偶数项的和:a2+a4+…+a(2n-2)+a2n=[a2+a2n]/2*n=420
注:以上两部根据等差数列求和公式.
显然有a1+a(2n+1)=a2+a2n,设a1+a(2n+1)=a2+a2n=x
我们可以得到一个一元二次方程组:
x/2*(n+1)=450
x/2*n=420
解得x=60,n=14
所以等差数列项数共2n+1=29
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.