当前位置: > 证明函数f(x)=lg(x+根号x2+1) 在R上为单调增函数...
题目
证明函数f(x)=lg(x+根号x2+1) 在R上为单调增函数
根号下(x平方+1)
为何(x2-x1)+[根号(x2平方+1)-根号(x1平方+1)]
>0

提问时间:2020-10-12

答案
取x1[x2+根号(x2平方+1)]-[x1+根号(x1平方+1)]
=(x2-x1)+[根号(x2平方+1)-根号(x1平方+1)]
>0
∴x+根号(x平方+1)在R上是单调增的
f(x2)=[x2+根号(x2平方+1)]
f(x1)=[x1+根号(x1平方+1)]
∵x2+根号(x2平方+1)>x1+根号(x1平方+1)
∴f(x2)>f(x1)
∴f(x)在R上为单调增函数
【说明】
(x2-x1)+[根号(x2平方+1)-根号(x1平方+1)]
=(x2-x1)+(x2平方-x1平方)/[根号(x2平方+1)+根号(x1平方+1)]【分子有理化】
=(x2-x1)+(x2-x1)(x2+x1)/[根号(x2平方+1)+根号(x1平方+1)]
=(x2-x1){1+(x2+x1)/[根号(x2平方+1)+根号(x1平方+1)]}
x2-x1>0,这个没问题吧
下面来解决1+(x2+x1)/[根号(x2平方+1)+根号(x1平方+1)]的符号
|x2|<|根号(x2平方+1)|,|x1|<|根号(x1平方+1)|
所以|(x2+x1)/[根号(x2平方+1)+根号(x1平方+1)]|<1
再加1,肯定大于0
两个都是大于零的式相乘,肯定大于零
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.