题目
1/1x3+1/3x5+1/5x7+……+1/99x101
有固定公式的最好给出公式.
有固定公式的最好给出公式.
提问时间:2020-10-12
答案
首先把每一个分式拆成两项之差,即
1/1×3+1/3×5+1/5×7+……1/99×101= (1/2)×(1-1/3)+(1/2)×(1/3-1/5)+(1/2)×(1/5-1/7)+……+(1/2)×(1/99-1/101)
然后将每一项的1/2提出来,即原式=(1/2)×(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)
观察这个式子,可以看到从第二项即1/3开始,每一项都可以和后面的一项相消,相消后只剩下1和1/101两项,即
原式=(1/2)x(1-1/101)=50/101
可以概括为
1/(2n-1)*(2n+1)=1/2[1/(2n-1)-1/(2n+1)
原式=1/2{1/1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)}
=1/2{1-1/(2n+1)}
由上式可知n=50,这样结果为50/101
1/1×3+1/3×5+1/5×7+……1/99×101= (1/2)×(1-1/3)+(1/2)×(1/3-1/5)+(1/2)×(1/5-1/7)+……+(1/2)×(1/99-1/101)
然后将每一项的1/2提出来,即原式=(1/2)×(1-1/3+1/3-1/5+1/5-1/7+……+1/99-1/101)
观察这个式子,可以看到从第二项即1/3开始,每一项都可以和后面的一项相消,相消后只剩下1和1/101两项,即
原式=(1/2)x(1-1/101)=50/101
可以概括为
1/(2n-1)*(2n+1)=1/2[1/(2n-1)-1/(2n+1)
原式=1/2{1/1-1/3+1/3-1/5+...+1/(2n-1)-1/(2n+1)}
=1/2{1-1/(2n+1)}
由上式可知n=50,这样结果为50/101
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1除了水有三态变化还有那个物质有三态变化
- 2欧洲人和亚洲人为什么长相不一样?
- 31千克/立方米和1克/立方厘米 怎么转换
- 4Little Robert asked his mother for two cents. "What did you do with the money I gave you yesterda怎
- 525乘以398用简便方法怎么算
- 6"困难说:人生就是.勤劳说:.奋斗说:."有多少个答案?
- 7一面墙要粉刷2次,第二次是第一次的80%,小明家两遍粉刷共用油漆160升,两次各用多少升
- 8工资应用题
- 9x∈(0,1/3),求y=X^2(1-3X)的最大值
- 10在等腰三角形ABC中,角ABC=90°,AB=BC=5根号2cm,将△ABC绕直线AC旋转一周,所得几何体的表面积为——cm2
热门考点