当前位置: > 已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  ) A.(0,2) B.(0,8) C.(2,8) D....
题目
已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(  )
A. (0,2)
B. (0,8)
C. (2,8)
D. (-∞,0)

提问时间:2020-10-12

答案
当m≤0时,
当x接近+∞时,函数f(x)=2mx2-2(4-m)x+1与g(x)=mx均为负值,
显然不成立
当x=0时,因f(0)=1>0
当m>0时,
-
b
2a
=
4-m
2m
≥0
,即0<m≤4时结论显然成立;
-
b
2a
=
4-m
2m
<0
,时只要△=4(4-m)2-8m=4(m-8)(m-2)<0即可,即4<m<8
则0<m<8
故选B.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.