题目
请帮下忙!
已知奇函数f(x)的定义域为R,且f(x)在【0,正无穷〕上是增函数,是否存在这样的实数m,使f(cos2x-3)+f(4m-2mcosx)>f(0)对所有x属于【0,pai/2】均成立?若成立,求出适合条件的实数免得值或取值范围?
已知奇函数f(x)的定义域为R,且f(x)在【0,正无穷〕上是增函数,是否存在这样的实数m,使f(cos2x-3)+f(4m-2mcosx)>f(0)对所有x属于【0,pai/2】均成立?若成立,求出适合条件的实数免得值或取值范围?
提问时间:2020-10-12
答案
奇函数f(x)的定义域为R
所以f(0)=0
f(cos2x-3)+f(4m-2mcosx)>0
f(cos2x-3)>-f(4m-2mcosx)
f(cos2x-3)>f(-4m+2mcosx)
即cos2x-3>-4m+2mcosx
2(cosx)^2-2mcosx+4m-4>0
0≤cosx=t≤1
2t^2-2mt+4m-4>0
m>(t2-2)/(t-2)
又(t2-2)/(t-2)=4-[(2-t)+2/(2-t)]≤4-2√2
所以m>4-2√2
所以f(0)=0
f(cos2x-3)+f(4m-2mcosx)>0
f(cos2x-3)>-f(4m-2mcosx)
f(cos2x-3)>f(-4m+2mcosx)
即cos2x-3>-4m+2mcosx
2(cosx)^2-2mcosx+4m-4>0
0≤cosx=t≤1
2t^2-2mt+4m-4>0
m>(t2-2)/(t-2)
又(t2-2)/(t-2)=4-[(2-t)+2/(2-t)]≤4-2√2
所以m>4-2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1田径队5位同学的身高分别是137厘米、142厘米、136厘米、138厘米、137厘米、他们的平均身高是多少厘米?
- 2用导数求面积最小值
- 3细胞核中含有哪些RNA
- 4生意兴隆通四海,财源茂盛达三江什么意思
- 5My sister is____ than me.She often keeps _____(quiet).
- 6读一读,写一写.
- 71×2×3×4×5×6×7×8…×2006×2007×2008×2009×2010的末尾有多少个连续的零?
- 8求函数y=-x²+2x+3的极值
- 9诗经中有名的很美的诗句有哪些
- 10两辆火车同时从甲,乙两站相向而行,第一次相遇时在离甲站40千米的地方,两车仍以原速度前进,各车分别到站后立即返回,又在离乙站20千米的地方相遇,两站相距多少千米?
热门考点