当前位置: > 请帮下忙!...
题目
请帮下忙!
已知奇函数f(x)的定义域为R,且f(x)在【0,正无穷〕上是增函数,是否存在这样的实数m,使f(cos2x-3)+f(4m-2mcosx)>f(0)对所有x属于【0,pai/2】均成立?若成立,求出适合条件的实数免得值或取值范围?

提问时间:2020-10-12

答案
奇函数f(x)的定义域为R
所以f(0)=0
f(cos2x-3)+f(4m-2mcosx)>0
f(cos2x-3)>-f(4m-2mcosx)
f(cos2x-3)>f(-4m+2mcosx)
即cos2x-3>-4m+2mcosx
2(cosx)^2-2mcosx+4m-4>0
0≤cosx=t≤1
2t^2-2mt+4m-4>0
m>(t2-2)/(t-2)
又(t2-2)/(t-2)=4-[(2-t)+2/(2-t)]≤4-2√2
所以m>4-2√2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.