题目
抛物线Y=-1/2x^2上有两点A(X1,Y1),B(X2,Y2),且向量OA·向量OB=0,又向量OM=(0,-2)
1,求证向量AM//向量AB
2,若向量MA=-2·向量MB,求AB所在直线方程
没有打错,这里的向量平行相当于共线
1,求证向量AM//向量AB
2,若向量MA=-2·向量MB,求AB所在直线方程
没有打错,这里的向量平行相当于共线
提问时间:2020-10-11
答案
1.
OA*OB = 0
故 -1/2(x1)^2*-1/2(x2)^2 + (x1)*(x2) = 0
即 (x1)*(x2) + 4 = 0
而AM // AB的充要条件是 (y2 - y1)*(-x1) = (-2 - y1)*(x2 - x1)
化简即得(x1)*(x2) + 4 = 0,就是上面得到的结论,得证
2.
MA=-2MB
故 (x1, y1+2) = -2(x2, y2+2)
又 (x1)*(x2) + 4 = 0
得 x1 = -2sqrt(2)(就是-2倍根号2的意思) x2 = sqrt(2)(根号2)
A(-2sqrt(2), -4)
B(sqrt(2), -1)
所以直线AB方程可得
AB : y = 5/6*(sqrt(2))*x - 8/3
OA*OB = 0
故 -1/2(x1)^2*-1/2(x2)^2 + (x1)*(x2) = 0
即 (x1)*(x2) + 4 = 0
而AM // AB的充要条件是 (y2 - y1)*(-x1) = (-2 - y1)*(x2 - x1)
化简即得(x1)*(x2) + 4 = 0,就是上面得到的结论,得证
2.
MA=-2MB
故 (x1, y1+2) = -2(x2, y2+2)
又 (x1)*(x2) + 4 = 0
得 x1 = -2sqrt(2)(就是-2倍根号2的意思) x2 = sqrt(2)(根号2)
A(-2sqrt(2), -4)
B(sqrt(2), -1)
所以直线AB方程可得
AB : y = 5/6*(sqrt(2))*x - 8/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1方程5=(2x-3)(3+2x)的二次项系数为____,一次项系数为____,常数项为______
- 21、甲、乙、丙三人合修一围墙,甲、乙合作6天完成工作量的1/3,然后乙、丙合作2天完成余下任务的1/4,剩余的工作三人合作5天才完成.他们各完成了这项工程的多少?
- 3形容做每件事都错过机会的句子
- 4英语翻译
- 53S+6KOH==K2SO3+3H2O+2K2S(加热)
- 62道高一化学【单选】(关于氧化还原反应的)详细解释,
- 7在教室后墙上有一只钟 英语怎么说
- 8做对第一题的有15人,做对第二题的有23人,两道题都对的有10人,这个班一共有多少人?
- 9The bike cost me 100 yuan. 帮忙改4个同意句
- 10世界上有哪些著名运河?