当前位置: > 已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1...
题目
已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1

提问时间:2020-10-11

答案
证明:因为 A为正交矩阵,所以 AA^T = E.
所以 |A-E|
= |A - AA^T|
= |A(E-A^T)|
= |A||E-A^T|
= |(E-A)^T|
= |E-A|
= |-(A-E)|
= (-1)^(2n+1) |A-E|
= -|A-E|.
所以 |A-E|=0
所以1是A的特征值.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.