当前位置: > 在△ABC中,若sinA+sinB=sinC(cosA+cosB). (1)判断△ABC的形状; (2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围....
题目
在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)判断△ABC的形状;
(2)在上述△ABC中,若角C的对边c=1,求该三角形内切圆半径的取值范围.

提问时间:2020-10-10

答案
(1)根据正弦定理,原式可变形为:c(cosA+cosB)=a+b①,
∵根据任意三角形射影定理得:a=b•cosC+c•cosB,b=c•cosA+a•cosC,
∴a+b=c(cosA+cosB)+cosC(a+b)②,
由于a+b≠0,故由①式、②式得:cosC=0,
∴在△ABC中,∠C=90°,
则△ABC为直角三角形;
(2)∵c=1,sinC=1,∴由正弦定理得:外接圆半径R=
c
2sinC
=
1
2

a
sinA
=
b
sinB
=
c
sinC
=2R=1,即a=sinA,b=sinB,
∵sin(A+
π
4
)≤1,
∴内切圆半径r=
1
2
(a+b-c)=
1
2
(sinA+sinB-1)=
1
2
(sinA+sinB)-
1
2
=
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.