当前位置: > 设函数f(x)=【根号(x2+1)】-ax,当a>=1时,试证函数f(x)在区间【0,+无穷】上是单调函数...
题目
设函数f(x)=【根号(x2+1)】-ax,当a>=1时,试证函数f(x)在区间【0,+无穷】上是单调函数

提问时间:2020-10-10

答案
任取x1>x2>0
f(x1)-f(x2)=√(x1^2+1)-ax1-√(x2^2+1)-ax2
=(x1^2+1-x2^2-1)÷(√(x1^2=1)+√(x2^2+1))-a(x1-x2)
=(x1-x2)((x1+x2)÷(√(x1^2+1)+√(x2^2+1))-a)
因为x1>x2只需要判断后面那个括号里的正负性
即(x1+x2)÷(√(x1^2+1)+√(x2^2+1))-a的正负性
又因为a>=1所以,只需判断(x1+x2)÷(√(x1^2+1)+√(x2^2+1))与1的大小关系
所以比较(x1+x2)-(√(x1^2+1)+√(x2^2+1))与0的大小
因为√(x1^2+1)>x1 √(x2^2+1)>x2
所以(x1+x2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.