当前位置: > 在三角形ABC中,m=(cosC/2 ,sinc/2 ),n=(cosc/2 ,-sin c/2)...
题目
在三角形ABC中,m=(cosC/2 ,sinc/2 ),n=(cosc/2 ,-sin c/2)
在三角形ABC中,m =(cosC/2 ,sinc/2 ),n=(cosc/2 ,-sin c/2)且 mn的夹角为 3/π
(1)求C
我看了答案后完全不懂

提问时间:2020-10-09

答案
cos(π/3)=1/2=m•n/(|m|×|n|).得到:1/2=cosC/(1×1)=cosC. ∠C=π/3
[m•n=cos²c/2-sin ²c/2=cosC. |m|=|n|=1].
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.