当前位置: > 对任意实数x,y,证明xy≤(x+y/2)^2...
题目
对任意实数x,y,证明xy≤(x+y/2)^2

提问时间:2020-10-09

答案
证明:xy≤(x+y/2)^2
xy≤(x+y)^2/4
4xy≤(x+y)^2
4xy≤x^2+2xy+y^2
0≤x^2-2xy+y^2
0≤(x-y)^2
因为对任意实数x,y,0≤(x-y)^2恒成立
所以有xy≤(x+y/2)^2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.