当前位置: > 若对任意正实数x,y,总有f(xy)=f(x)+f(y),证明:...
题目
若对任意正实数x,y,总有f(xy)=f(x)+f(y),证明:
f(1/x)=-f(x);
f(x/y)=f(x)-f(y)

提问时间:2020-10-09

答案
1.当x=y=1时f(1)=f(1)+f(1)得f(1)=0
当y=1/x时f(1)=f(x)+f(1/x)=0得f(1/x)=-f(x)
2.由f(xy)=f(x)+f(y)则f(x/y)=f(x)+f(1/y)
应为第一题已证f(1/x)=-f(x)所以f(x/y)=f(x)-f(y)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.