当前位置: > 设正整数m,n满足m(m-1)=7*n^2,求证:m为平方数....
题目
设正整数m,n满足m(m-1)=7*n^2,求证:m为平方数.

提问时间:2020-10-08

答案
因为7整除7n^2,所以7整除m(m-1),而m与m-1互素,所以要么7整除m,要么7整除m-1,
1,若7整除m,设m=7k,代入原式,有k(7k-1)=n^2,而k与7k-1互素,所以k和7k-1都是完全平方数,但是完全平方数除以7的余数只能是0,1,2,4,故7k-1不是完全平方数,矛盾.
2,若7不整除m,则7整除m-1,设m-1=7k,代入,(7k+1)*k=n^2,所以7k+1和k均为完全平方数,而m就是7k+1,所以m为完全平方数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.