当前位置: > 已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值....
题目
已知抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a,b值,并求S的最大值.

提问时间:2020-10-07

答案
依题设可知抛物线与x轴的交点的横坐标分别为x1=0,x2=−ba,所以S=∫−ba0(ax2+bx)dx=(13ax3+12bx2)|−ba0=13a•(−ba)3+12b•(−ba)2=16a2•b3(1)…(4分)又直线x+y=4与抛物线y=ax2+bx相切,即它们有唯一的...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.