当前位置: > 高二数学椭圆的一道题,帮解一下...
题目
高二数学椭圆的一道题,帮解一下
已知椭圆C焦点分别为F1(-2√2,0),F2(2√2,0),长轴长为6,直线L过点(-2,0)与椭圆C交于A、B两点.
1.若直线的斜率为1,求AB长
2.AB中点M的轨迹方程

提问时间:2020-10-05

答案
啊,先把椭圆方程求出来,是,9分之X方 + Y方 =1
然后设直线L的方程是y=kx+m,因为过(-2,0),且k=1,把点带入直线方程.然后可以求出来L是y=x+2
然后联立椭圆和直线的方程.可以得到一个综合的方程.由韦达定理可以求出来X1+X2,X1乘X2.然后AB用弦长公式,AB=根号下【(1+k方)[(X1+X2)方-4X1X2】当当当——第一问就是这样~
然后第二问,设M(x,y)
x=2分之X1+X2
y=2分之Y1+Y2
y1,y2可以根据直线方程分别用X1,X2表示出来.所以y就也可以用X1,X2表示出来
然后M在直线L上,带入方程就行了~
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.