当前位置: > 用柯西不等式证明一道题目!...
题目
用柯西不等式证明一道题目!
2/a+b + 2/b+c + 2/c+a>9/a+b+c
要详细的用柯西不等式证明

提问时间:2020-10-03

答案
[(a+b)+(b+c)+(c+a)][1/(a+b)+1/(b+c)+1/(c+a)]>=[(a+b)*1/(a+b)+(b+c)*1/(b+c)+(c+a)*1/(c+a)]^2=3^2=9
所以2(a+b+c)*[1/(a+b)+1/(b+c)+1/(c+a)]>=9
所以2/(a+b)+2/(b+c)+2/(c+a)>=9/(a+b+c)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.