当前位置: > 若点O和点F分别为椭圆x²/4+y²/3=1的中心和左焦点,点P为椭圆上的任何一点...
题目
若点O和点F分别为椭圆x²/4+y²/3=1的中心和左焦点,点P为椭圆上的任何一点
想得到的帮助:1向量OP乘以向量FP的最大值为?
2过程中OP=(x,y),FP=(x+1,y)是怎样推导出的?

提问时间:2020-09-30

答案
a=2,b=√3,c=1,O(0,0),F(-1,0)
1,设P(x,y),那么向量OP=(x,y),向量FP=(x+1,y)
所以向量OP*向量FP=x(x+1)+y²=x²+x+y²
又点P(x,y)在椭圆x²/4+y²/3=1上,那么y²=3-3x²/4
所以向量OP*向量FP=x²+x+3-3x²/4
=1/4*x²+x+3
=1/4*(x+2)²+2
而-2≤x≤2,那么当x=2时,1/4*(x+2)²+2取得最大值,为1+2+3=6
即向量OP*向量FP的最大值为6
2,向量的坐标就是箭头的点的坐标减去尾的点的坐标啊,这个不是书上说的吗……
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.