当前位置: > 函数y=tanx-tanx的三次方除以1+2tanx的平方+tanx的四次方,(x∈[π/24,π/6])的最大值和最小值之积是----...
题目
函数y=tanx-tanx的三次方除以1+2tanx的平方+tanx的四次方,(x∈[π/24,π/6])的最大值和最小值之积是----

提问时间:2020-09-29

答案
y=[tanx-(tanx)^3]/[1+2(tanx)^2+(tanx)^4]=(tanx)(1+tanx)(1-tanx)/[1+(tanx)^2]^2=1/2*{[1-(tanx)^2]/[1+(tanx)^2]}*{(2tanx)/[1+(tanx)^2]}=1/2*cos(2x)*sin(2x)=1/4*sin(4x),x∈[π/24,π/6],故4x∈[π/6,2π/3]...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.