当前位置: > 离散分布,样本x1,...,xn独立同分布.概率密度P(x=-1)=a/2,P(x=0)=1/2,P(x=1)=(1-a)/2.求a的最大似然估计...
题目
离散分布,样本x1,...,xn独立同分布.概率密度P(x=-1)=a/2,P(x=0)=1/2,P(x=1)=(1-a)/2.求a的最大似然估计

提问时间:2020-09-08

答案
记样本x1,...,xn中取-1的个数是m,取1的个数是k,则取0的个数是n-m-k,他们都是样本的函数,也就是统计量.似然函数L(a|x1,x2,..,xn)=(a/2)^m*((1-a)/2)^k*(1/2)^(n-m-k)
对数似然函数:L=mlna+kln(1-a)+c (c为与a无关的常数)
令0=dL/da =m/a - k/(1-a) 得 a=m/(m+k) 这就是a的最大似然估计.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.