当前位置: > 数列{an}满足a1=3/2,a(n+1)=an^2-an+1 (n∈N*),则m=(1/a1)+(1/a2)+……(1/a2009)的整数部分是...
题目
数列{an}满足a1=3/2,a(n+1)=an^2-an+1 (n∈N*),则m=(1/a1)+(1/a2)+……(1/a2009)的整数部分是
A.0 B.1 C.2 D.3

提问时间:2020-08-29

答案
a(n+1)-1=an*(a(n)-1),1/(a(n+1)-1)=1/[an*(a(n)-1)=1/(an-1)-1/an
得1/(an-1)-1/(a(n+1)-1)=1/an,通过累加的方法得,
1/a1+1/a2+……+1/a2009= 1/(a1-1)-1/(a2010-1)=2-1/(a2010-1)
由a(n+1) - an=(an-1)^2≥0 ,即a(n+1)≥an, 由a1=3/2,得a2=7/4,得a3=2又5/16.
所以,a2010≥a009≥a2008≥……≥a3>2,即 0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.