题目
在△ABC中,若a=7,b=8,cosC=
,则最大角的余弦是( )
A. −
B. −
C. −
13 |
14 |
A. −
1 |
5 |
B. −
1 |
6 |
C. −
提问时间:2021-09-12
答案
∵在△ABC中,a=7,b=8,cosC=
∴c2=a2+b2-2abcosC=49+64-2×7×8×
∵b>a>c,∴最大边为b,可得B为最大角 因此,cosB=
故选:C 利用余弦定理c2=a2+b2-2abcosC的式子,结合题意算出c=3,从而得到b为最大边,算出cosB的值即可得到最大角的余弦之值. 余弦定理;正弦定理. 本题给出三角形的两边和夹角,求最大角的余弦.着重考查了三角形中大边对大角、利用余弦定理解三角形的知识,属于基础题. 举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程. 我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好 奥巴马演讲不用看稿子.为什么中国领导演讲要看? 想找英语初三上学期的首字母填空练习…… 英语翻译
最新试题
热门考点
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
|