当前位置: > 设a>0当-1≤x≤1时,函数y=-x2-ax+b+1的最小值是-4,最大值是0,求a,b的值....
题目
设a>0当-1≤x≤1时,函数y=-x2-ax+b+1的最小值是-4,最大值是0,求a,b的值.

提问时间:2020-08-28

答案
y=−x2−ax+b+1=−(x+
a
2
)2+
a2
4
+b+1

(1)若
a
2
≤−1
,即a≥2时,函数y在[-1,1]上单调递减;
∴该函数的最小值是b-a=-4;最大值是a+b=0,两式联立即得a=2,b=-2;
(2)若−1<−
a
2
<0
,即0<a<2时,x=
a
2
时,函数y取最大值
a2
4
+b+1
=0   ①;
又f(-1)=a+b,f(1)=-a+b,f(1)<f(-1),∴函数y的最小值是-a+b=-4   ②;
①②两式联立解得a=2,b=-2,不符合0<a<2,∴这种情况不存在;
综上得a=2,b=-2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.