当前位置: > 斜率是2,与圆X²+y²-4=0相切,求直线方程...
题目
斜率是2,与圆X²+y²-4=0相切,求直线方程

提问时间:2020-11-03

答案
设直线方程为y=2x+b(斜截式),就是2x-y+b=0
x²+y²-4=0的圆心是(0,0),半径是2
因为相切,所以圆心到直线的距离等于半径
|b|/根号5=2,解得b=±2倍根号5
所以直线方程有两条,2x-y+2倍根号5=0或2x-y-2倍根号5=0
这是高中解法,若你需要初中解法,请留言
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.