当前位置: > 矩阵乘法的几何意义...
题目
矩阵乘法的几何意义
最好提供一些矩阵乘法的变换例子,急用!

提问时间:2020-08-28

答案
空间中可以用向量组(如顶点的集合)表示一个几何形状,也可以用方阵来表示一个变换,比如把一个几何形状扩大,缩小,旋转,平移等等,C=AB,就是说C是向量组A经过了B变换得到的结果,B变换的逆变换是B的逆矩阵,A=CB^(-1)就把A变回来了.如果B不可逆,就说这个变换是不可逆的,如投影变换.
如二维平面的旋转公式矩阵是T=[cos(phi) sin(phi)/-sin(phi) cos(phi)]
(“/”表示下一行)
那么要把向量[x / y],逆时针转phi角就可以表示为:
[x' / y']=T[x / y]
CAD/CAM的课程会有比较详细的介绍.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.