题目
三棱锥顶点P在底面的射影O是△ABC的垂心,PA⊥PB
(1)求证PA⊥平面PBC(2)若PA=BC=a,二面角P-BC-A的平面角是60度,求三菱锥A-PBC的体积.
(1)求证PA⊥平面PBC(2)若PA=BC=a,二面角P-BC-A的平面角是60度,求三菱锥A-PBC的体积.
提问时间:2020-08-27
答案
证明:(1)连结PO,连结AO并延长交BC于D,连结PD
∵PO⊥平面ABC
∴PO⊥BC
∵O是△ABC的垂心
∴AD⊥BC
∵BC⊥AD BC⊥PO
∴BC⊥平面APD
∴BC⊥AP
∵AP⊥PB
∴AP⊥平面PBC
(2)由(1)可知,∠PDA=60°,则由PA=a,可得PD=根号3*a/3
所以△PBC的面积为S=1/2*a*根号3*a/3=根号3*a^2/6
所以V=1/3*a*根号3*a^2/6=根号3*a^3/18
高中东西忘完了,不知道做的对不
∵PO⊥平面ABC
∴PO⊥BC
∵O是△ABC的垂心
∴AD⊥BC
∵BC⊥AD BC⊥PO
∴BC⊥平面APD
∴BC⊥AP
∵AP⊥PB
∴AP⊥平面PBC
(2)由(1)可知,∠PDA=60°,则由PA=a,可得PD=根号3*a/3
所以△PBC的面积为S=1/2*a*根号3*a/3=根号3*a^2/6
所以V=1/3*a*根号3*a^2/6=根号3*a^3/18
高中东西忘完了,不知道做的对不
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1各种颜色的彩旗五颜六色,迎风飘扬.(修改病句)
- 21:1 打一成语
- 3已知a=2006*2006-2006/2005*2005+2005,b=2007-2007*2007/2006*2006+2006,c=2008-2008*2008/2007+2007*2007
- 4酸具有共同的性质,是因为( ) A.都能使石蕊试液变红 B.都能电离出氢离子 C.都能跟碱反应生成盐和水 D.都含有氧元素
- 5下列描述的一定是金属元素的是:( D)
- 6(1).如果直线X+Y=t 与圆X平方+Y平方=4 相交于A.B 两点 ,O为原点 ,如果OA向量与OB向量的夹角为60度.则t的值为多少 .
- 7三道初一英语
- 8用初等行变换方法求下列线性方程组 x1-x2+x3-x4=1 x1-x2-x3+x4=0 x1-x2-2x3+2x4=-1/2
- 9粤语"你"的发音
- 10如图,已知AB=AC,AD=AE.求证:BD=CE.
热门考点