当前位置: > 在三角形ABC的外接圆半径为R,且2R(sin^2A-sin^2C)=(根号2倍a-b)sinB,求三角形ABC面积的最大值....
题目
在三角形ABC的外接圆半径为R,且2R(sin^2A-sin^2C)=(根号2倍a-b)sinB,求三角形ABC面积的最大值.

提问时间:2020-08-13

答案
2R[(sinA)^2-(sinC)^2]=2R[a^2/(2R)^2-c^2/(2R)^2]=[1/(2R)](a^2-c^2)
(√2a-b)sinB=[1/(2R)](√2ab-b^2)
由题意知,[1/(2R)](a^2-c^2)=[1/(2R)](√2ab-b^2)
即a^2-c^2=√2ab-b^2
cosC=(a^2+b^2-c^2)/(2ab)=√2/2,则C=π/4
c=2RsinC=√2R
√2ab=a^2+b^2-c^2>=2ab-2R^2
(2-√2)ab
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.