当前位置: > 证明在任意选取的n+2个正整数中存在着两个正整数,其差能被2n整除或其和能被2n整除...
题目
证明在任意选取的n+2个正整数中存在着两个正整数,其差能被2n整除或其和能被2n整除

提问时间:2020-08-12

答案
证明:根据抽屉原理,把n+2个正整数按照模2n的剩余类构造n+1个抽屉{0,2n},{ 1,2n-1},{ 2,2n-2},……,{ n-1,n+1},{ n},所以至少有两个数取至同一个抽屉,所以他们的和或差必能被2n整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.