当前位置: > 已知a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值是多少?...
题目
已知a^2+b^2=1,b^2+c^2=2,c^2+a^2=2,则ab+bc+ca的最小值是多少?
选项A:(3^1/2)-1/2 B:1/2-(3^1/2)
C:-1/2-(3^1/2) D:1/2+(3^1/2)

提问时间:2020-08-11

答案
解得:
c^2=3/2
a^2=1/2
b^2=1/2
ab+bc+ca
=((a+b+c)^2 -(aa+bb+cc))/2
=1/2(a+b+c)^2 - 5/4
当(a+b+c)^2最小时,得到最小值,
显然是当c为负,a,b为正;或a,b为负,c为正时,
a+b+c离0最近
(a+b+c)^2 = (-√(3/2) + √2)^2 = 7/2 - 2√3
所以最小值:
1/2-√3
选B
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.