当前位置: > 若p1p2=2(q1+q2),证明:关于x的方程x2+p1x+q1=0与方程x2+p2x+q2=0中,至少有一个方程有实数根....
题目
若p1p2=2(q1+q2),证明:关于x的方程x2+p1x+q1=0与方程x2+p2x+q2=0中,至少有一个方程有实数根.

提问时间:2020-08-10

答案
假设原命题不成立,
即x2+p1x+q1=0与x2+p2x+q2=0
∴△1=p12-4q1<0,△2=p22-4q2<0
两式相加得:
p12+p22-4q1-4q2<0,即p12+p22<4(q1+q2
又∵p1p2=2(q1+q2),∴p12+p22<2p1p2
即:(p1-p22<0,此式显然不成立.
故假设不成立,原命题是正确的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.