当前位置: > 若a是大于0的常数,求函数y = (a + sin x)*(a + cos x) 的最大值和最小值...
题目
若a是大于0的常数,求函数y = (a + sin x)*(a + cos x) 的最大值和最小值

提问时间:2020-08-10

答案
答:y = (a + sin x)*(a + cos x) 的最大值=a^2+(√2)*a +1/2
当0√2时,m=-√2,y有最小值=a^2-(√2)*a+1/2
设m=sinx+cosx
m^2=(sinx+cosx)^2=(sinx)^2+(cosx)^2+2sinx*cosx
=1+2sinx*cosx
sinx*cosx=(m^2-1)/2
m^2=1+2sinx*cosx=1+sin2x≤2
m的最大值=√2
m的最小值=-√2
Y=(a + sin x)*(a + cos x)
=a^2+sinxcosx+a(sinx+cosx)
=a^2+(m^2-1)/2+am
=1/2(m+a)^2+(a^2-1)/2
(1)最大值
m=√2 时,y有最大值=a^2+(√2)*a +1/2
(2)最小值
因a>0,
当0√2时,m=-√2,y有最小值=a^2-(√2)*a+1/2
注意本题最易出错的地方:a>0,如a=100,y有最小值=(a^2-1)/2就是错误的,因为m最小=-√2,显然m=-100是错误的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.