当前位置: > 如图,△ABC的边BC的中垂线DF交△BAC的外角平分线AD于D,F为垂足,DE⊥AB于E,且AB>AC,求证:BE-AC=AE....
题目
如图,△ABC的边BC的中垂线DF交△BAC的外角平分线AD于D,F为垂足,DE⊥AB于E,且AB>AC,求证:BE-AC=AE.

提问时间:2020-08-10

答案
证明:作DG⊥AC,连接BD、CD,
∵AD是外角∠BAG的平分线,DE⊥AB,
∴∠DAE=∠DAG,
则在△ADE与△ADG中,
∠DEA=∠DGA
∠EAD=∠GAD
AD=AD

∴△ADE≌△ADG(AAS),
∴AE=AG,
∵DF是BC的中垂线,
∴BD=CD,
∴在Rt△BED和Rt△CGD中,
DE=DG
BD=CD

∴Rt△BED≌Rt△CGD(HL),
∴BE=CG=AC+AG,AG=AE,
∴BE-AC=AE.
作DG⊥AC,连接BD、CD,易证△ADE≌△ADG,得AE=AG,只要再证明△BED≌△CGD,即可得到;

全等三角形的判定与性质;线段垂直平分线的性质.

本题主要考查了全等三角形的判定与性质、线段垂直平分线的性质和角平分线的性质,考查了学生综合运用知识解决问题的能力,作辅助线构建全等三角形,是解答本题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.